

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics A (4MA0)
Paper 4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042087
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission
- o awrt -answer which rounds to

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another. Apart from Questions and 15d and 19b, where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark		Notes
1 (i)		{i, a}		B1	Brackets and commas not needed.
(ii)		{c, h, i, n, a, t, l, y}	2	B1	Do not allow repetitions.
					Total 2 marks

2	$\frac{638}{2.75}$ or $\frac{638}{2\frac{3}{4}}$ or $\frac{638}{11/4}$ or $\frac{638}{11} \times 4$ or $\frac{638}{165} \times 60$ oe			M2	M1 for 638 ÷ 2.45 or 260(.408) rounded or truncated to 3 or more significant figures or 638 ÷ 165 or 3.86(6666) rounded or truncated to 3 or more significant figures.
		232	3	A1	cao
					Total 3 marks

3 (a)	Eg $\frac{7\frac{1}{2}}{100} \times 15000$ or 0.075×15000 oe or 1125 or $0.075 \times 15000 + 15000$ or 15000×1.075 oe	16125	2	M1	For finding 7.5% of 15000 or for a complete method to increase 15000 by 7.5% (eg 1.075 × 15000)
(b)	Eg $\frac{1800}{8} \times 108$ or $\frac{1800}{0.08} \times 1.08$ or 22500×1.08 or $\frac{1800}{0.08} + 1800$ or $\frac{1800}{8} \times 100 + 1800$ or $225 \times 100 + 1800$ or $22500 + 1800$	24300	3	M2	For a complete method M1 for $8\% = 1800$ or $0.08x = 1800$ or $\frac{1800}{8}$ or 225 or $\frac{1800}{0.08}$ or 22500 or $\frac{x}{1800} = \frac{108}{8}$ oe
					Total 5 marks

4	(a)	(-2,-4), (-1,-1), (0,2), (1,5), (2,8), (3,11)	correct line drawn		В3	For a correct line between $x = -2$ and
	. ,		from between $x = -2$			x = 3.
			and $x = 3$			
					B2	If not B3, then B2 for:
						• at least 2 correct points
						plotted or
						• for a line passing through at
						least 2 correct points orfor a line drawn with positive
						gradient through (0,2) and
						clear intention to use a
						gradient of 3 (eg. a line
						through and (0, 2) and
						(0.5, 5))
					B1	If not B2 then B1for:
					Dı	at least 2 correct points stated
						(may be in a table) or
						• for a line drawn with a
				3		positive gradient through #
						(0, 2) or
						• for a line with gradient 3.
	(b)				M1	ft for a point marked above their
						y = 3x + 2 if at least B1 scored in (a)
						or
						for a point to the right of $x = 2$

		correct point		A1	Point marked above $y = 3x + 2$ and to the right of $x = 2$ (not on lines). Label P may be omitted if unambiguous. SCB1 for the correct region identified
			2		by either shading in or shading out.
					Total 5 marks
5 (a)	$\frac{4+9+7+1+6+3}{2} \text{ or } \frac{(4+9+7+1+6+3)+1}{2} \text{ or } \frac{30}{2} \text{ or } \frac{31}{2} \text{ or } 15 \text{ or } 15\frac{1}{2}$	2	2	M1	Condone 1 omission Eg $\frac{9+7+1+6+3}{2}$ Accept a clear intention to list the numbers in order and find the centre of the list.
(b)		2	2	M2	For Lower quartile = 1 AND Upper quartile = 4 Accept a correct ordered list of the 30 numbers with both quartiles clearly identified in the correct position.
	$\frac{4+9+7+1+6+3}{4} \text{ or } \frac{(4+9+7+1+6+3)+1}{4} \text{ or } $ $\frac{30}{4} \text{ oe } (=7.5) \text{ or } \frac{31}{4} \text{ oe } (=7.75) \text{ or } 8 \text{ or } $ $3 \times \frac{\text{"30"}}{4} \text{ oe } (=22.5) \text{ or } 3 \times \frac{\text{"31"}}{4} \text{ oe } (=23.25) \text{ or } 23$				M1 for Lower quartile = 1 or
		3	3	A1	
					Total 5 marks

6 (a)	1-0.44-0.42-0.04 or 1-0.9			M1
		0.1 oe	2	A1 Accept $\frac{1}{10}$ oe or 10 %
(b)		0.86 oe	1	B1 Accept $\frac{86}{100}$ or $\frac{43}{50}$ oe or 86 %
(c)	1200×0.04			M1
		48		A1 Accept 48 out of 1200
			2	Note: M1A0 for 48/1200
				Total 5 marks
7.	180+43 or $360-(180-43)$ or $360-137$			M1 For a complete method.
		223	2	A1
				Total 2 marks

		1		1	
8 (a)	$\operatorname{Eg} \frac{175}{7} \times 9$			M1	For a complete method
	$\frac{\text{Lg}}{7}^{\times 9}$				
	,	225	2	A1	
	100 100	223			
(b)	$\frac{400}{27+14+9} \times 27$ oe or $\frac{400}{27+14+9}$ or $\frac{400}{50}$ or 8			M1	
	2.7.2.7.7	216	2	A1	
(c)	$(9:7=)27:21 \text{ or } 9:\frac{14}{3}$			M1	For $\frac{7}{9}x$ and $\frac{14}{27}x$ where x may also
	$\frac{(7.7-)27.21019.}{3}$				be any positive value
	7 14				
	Or Flaky: (flour x), fat $\frac{7}{9}x$ and Sweet: (flour x), fat $\frac{14}{27}x$				Eg $\frac{7}{9}$ and $\frac{14}{27}$
	2				Eg $\frac{7}{9} \times 270$ and $\frac{14}{27} \times 270$ (x = 270) or
	where x may also be any positive value				
					For $\frac{14}{27} \times \frac{9}{7}$ oe
					27 7
		3:2 oe		A1	Eg $\frac{7}{9}$: $\frac{14}{27}$ or 21: 14 or 189: 126 or
					$1:\frac{2}{3}$ or 1.5:1
					ISW only if answer is incorrectly
					simplified
			2		SCB1 for answer of 2:3 oe
					Total 6 marks

(b) $9-3<2x \text{ or} $ $6<2x \text{ or} $ $-2x<3-9 \text{ or} $ $-2x<-6$ $x>3$ Allow $3< x$ NB: Final answer must be an inequality scale for $x \ge 3$ or $x < 3$ or $x = 3$ of as an answer	9. (a)		10p-15	1	B1	Accept $10 \times p - 15$
$6 < 2x$ or $-2x < 3-9$ or $-2x < -6$ A1 Allow $3 < x$ NB: Final answer must be an inequality SCB1 for $x \ge 3$ or $x < 3$ or $x = 3$ or as an answer	. ,	9-3 < 2x or	107 13			Allow equals sign (Eg $6 = 2x$) or condone incorrect inequality sign
$-2x < -6$ $x > 3$ Al Allow $3 < x$ NB: Final answer must be an inequality $SCB1 \text{ for } x \ge 3 \text{ or } x < 3 \text{ or } x = 3 \text{ or } x \le 3 $		6 < 2x or				(eg o > 2x)
$x > 3$ Allow $3 < x$ NB: Final answer must be an inequality $SCB1 \text{ for } x \ge 3 \text{ or } x < 3 \text{ or } x = 3 \text{ or } x \le 3 $		-2x < 3-9 or				
NB: Final answer must be an inequality $SCB1 \text{ for } x \ge 3 \text{ or } x < 3 \text{ or } x = 3 \text{ or } x \le 3 \text{ or } x \le$		-2x < -6				
2 as an answer			x > 3		A1	NB: Final answer must be an
(c) (c) (2) 3 1/(2) 5 (c) 2 2 5 M1 For correct substitution				2		
$6 = (-2)^3 - k(-2) + 5 \text{ or } 6 = -8 + 2k + 5$ Allow omission of brackets.	(c)	$6 = (-2)^3 - k(-2) + 5$ or $6 = -8 + 2k + 5$			M1	For correct substitution Allow omission of brackets.
					M1	For correctly isolating $2k$ or $-2k$ or k
$-9 = -2k \text{ or } k = \frac{(-2)^3 - 6 + 5}{-2} \text{ or } -k = \frac{6 - (-2)^3 - 5}{-2} \text{ or } -k = -4.5$		$-9 = -2k$ or $k = \frac{(-2)^3 - 6 + 5}{-2}$ or $-k = \frac{6 - (-2)^3 - 5}{-2}$ or $-k = -4.5$				or $-k$ in a correct equation.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.5	3	A1	Accept $4\frac{1}{2}, \frac{9}{2}$
(d) $1 = 3(f+2) \text{ or } 1 = 3f+6 \text{ or } \frac{1}{3} = f+2$	(d)	$1=3(f+2)$ or $1=3f+6$ or $\frac{1}{3}=f+2$			M1	
$-1\frac{2}{3} \text{ oe} \qquad \qquad \text{A1} \qquad \text{Accept } -1.66(666) \text{ correctly rounded or truncated to at least 3}}{2}$			$-1\frac{2}{3}$ oe	2	A1	rounded or truncated to at least 3
Significant rigares.						Total 8 marks

10.	$\cos 56^{\circ} = \frac{7.4}{x} \text{ or } 7.4 = x \cos 56 \text{ or}$ $\sin(90 - 56) = \frac{7.4}{x} \text{ or } 7.4 = x \sin(90 - 56)$ $(x =) \frac{7.4}{\cos 56} \text{ or } \frac{7.4}{\sin(90 - 56)}$			M1 M1	Correct equation for x^2 eg $x^2 = 7.4^2 + (7.4 \tan 56^\circ)^2$ Correct expression for x eg $x = \sqrt{7.4^2 + (7.4 \tan 56^\circ)^2}$	Correct statement of Sine rule eg $\frac{x}{\sin 90} = \frac{7.4}{\sin (90-56)}$ Correct expression for x eg $(x) = \frac{7.4}{\sin (90-56)} \times \sin(90)$
		13.2	3	A1	awrt 13.2	
						Total 3 marks

					Total 3 marks
		257	3	A1	awrt 257
					57.4π or $180(.3274)$ or $2 \times \pi \times 3.5^2$ or 24.5π or 77 or $76.9(690)$
	81.9π or $180(.327) + 76.9(690)$ or $2\pi \times 3.5 \times 8.2 + \pi \times 3.5^2$ or $180(.327) + 38.4(845)$ or $218(.81)$				Allow 76.9(690), 180(.327), 38.4(845) and 218(.81) if rounded or truncated to at least 3 significant figures. M1 for $2 \times \pi \times 3.5 \times 8.2$ or
11.	$2\pi \times 3.5 \times 8.2 + 2\pi \times 3.5^2$ or $57.4\pi + 24.5\pi$ or			M2	

12.	(Gradient =) $-\frac{3}{5}$ or $(m =)$ $-\frac{3}{5}$	$y = -\frac{3}{5}x + 3 \text{ oe}$		M1 Allow (gradient or m) = $\frac{3}{5}$ or $(y =) - \frac{3}{5}x + c$ (c may be a number) M1 Indep (y =)mx + 3 (m may be a number except 0) Allow y intercept or $c = 3$ stated A1 oe Eg Accept $5y + 3x = 15$ or $y - 3 = -\frac{3}{5}(x - 0)$ or $y - 0 = -\frac{3}{5}(x - 5)$
			3	SC B2 for $-\frac{3}{5}x + 3$ or $L = -\frac{3}{5}x + 3$
				Total 3 marks

13. (a)	Eg. $\frac{12}{12+8}$ or $\frac{3}{5}$ or 0.6 or $\frac{12+8}{12}$ or $\frac{5}{3}$ or 1.66(66) or $\frac{MN}{13.5} = \frac{12}{12+8}$ oe or $(MN =)\frac{12}{12+8} \times 13.5$ oe	8.1	2	M1	for correct scale factor or correct equation involving MN or correct expression for MN Allow use of 1.66(66) in place of $\frac{5}{3}$ if rounded or truncated to at least 3 significant figures oe
(b)	Eg $\frac{PQ}{9} = \frac{12+8}{12}$ oe or $\frac{PQ}{9} = \frac{13.5}{"8.1"}$ or $PQ = 9 \times \frac{12+8}{12}$ oe or $PQ = 9 \times \frac{13.5}{"8.1"}$ oe or $PQ = 15$ or $\frac{LQ}{9} = \frac{8}{12}$ oe or $(LQ = 9 \times \frac{8}{12})$ oe			M1	Correct expression for PQ or LQ (eg $9 \times \frac{5}{3}$ oe or $9 \times \frac{2}{3}$ oe) Correct equation involving PQ or LQ (eg $\frac{PQ}{9} = \frac{5}{3}$ oe or $\frac{LQ}{9} = \frac{2}{3}$ oe) Allow use of 1.66(66) in place of $\frac{5}{3}$ or 0.666(66) in place of $\frac{2}{3}$ if rounded or truncated to at least 3 significant figures
		6	2	A1	
(c)		$\frac{25}{9}$ oe	1	B1	Accept $2\frac{7}{9}$ Accept 2.77(777) rounded or truncated to at least 3 significant figures Also accept $\left(\frac{20}{12}\right)^2$ or $\left(\frac{5}{3}\right)^2$

(d)	Eg " $\left(\frac{25}{9}\right)$ " $A - A = 105.6$ or $A\left(\left(\frac{25}{9}\right)\right)$ " -1 = 105.6 or $A\left(\left(\frac{16}{9}\right)\right)$ " $= 105.6$ or " $\left(\frac{25}{9}\right)$ " $A = 105.6 + A$ or			M1	For a correct equation involving <i>A</i> ft from part (c)
	$\frac{105.6+A}{"25/9"} = A$				
	$(A =) \frac{105.6}{\frac{25}{9} - 1}$ or $(A =) \frac{105.6}{1.77}$ or $(A =) \frac{105.6 \times 9}{16}$			M1	For correct expression for <i>A</i> . ft from part (c) Decimal values should be rounded or truncated correct to at least 3SF
		59.4	3	A1	oe
					Total 8 marks

14. (a) $V = \frac{k}{t^2}$ $V = $
Do not allow $V = \frac{1}{t^2}$ $28 = \frac{k}{2.5^2} \text{ oe or}$ M1 For correct substitution in a correct
$k = 28 \times 2.5^{2} \text{ or}$ $k = 175$ equation Implies first M1 Award M2 if $k = 175$ stated unambiguously in (a) or (b)
$V = \frac{175}{t^2}$ Al Only award if V is the subject.
$V = \frac{1}{t^2}$ Award M2A1 if $V = \frac{k}{t^2}$ on answer
and k evaluated as 175 in part (a) part (b)
(b) $V = \frac{"175"}{6.25^2}$ M1 ft for k if $k > 1$
$\frac{7}{6.25^2}$
4.48 2 A1

15.	(a)		1, 5, 21	1	B1
	(b)		correct curve	1	B1 Correct curve through (1,3), (2, 1), (3, 5), and (4, 21).
	(c)		-1.1	1	B1 Accept $-1.15 \le x \le -1.05$
	(d)	y = 1 - 2x drawn			M2 Line must be long enough to cross curve and verify accuracy. M1 for $x^3 - 3x^2 + 5 = -2x + 1$ or $y = -2x + 1$ oe
			-0.8	3	A1 dep on M2 Accept $-0.9 \le x \le -0.7$
					Total 6 marks

16.	$4\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{3} + 6\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2} + 4\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right) + \left(\frac{1}{6}\right)^{4} \text{ or }$ $\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right) \times \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) \times \left(\frac{1}{6}\right) \text{ or }$ $1 - \left(\frac{5}{6}\right)^{4}$			M2	Accept use of 0.16(666) in place of $\frac{1}{6}$ and 0.83(3333) in place of $\frac{5}{6}$ rounded or truncated to at least 2 decimal places. M1 for $\left(\frac{1}{6}\right) \times \left(\frac{5}{6}\right)^3$ or $\left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^2$ or $\left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)$ or $\left(\frac{1}{6}\right)^4$ or P(no sixes) = $\left(\frac{5}{6}\right)^4$
		$\frac{671}{1296}$	3	A1	Accept awrt 0.518
					Total 3 marks

17. (a)		21	1	B1	
(b)		62	1	B1	
(c)	$\angle KJL = 37^{\circ} \text{ or } \angle PJM = 60^{\circ} \text{ or } \angle LKM = 60^{\circ}$ or $\angle LMP = 37^{\circ} \text{ or } \angle MPJ = 58^{\circ} \text{ or } MPL = 122^{\circ}$ or $JPK = 122^{\circ}$	<u>-</u>		M2	If not M2 then M1 for: $\angle GJL = 81^{\circ}$ or $\angle GMJ = 81^{\circ}$ or $JKL = 81^{\circ}$ or $JML = 99^{\circ}$ Angles may be marked on the diagram or labelled in the working.
		58	3	A1	
					Total 5 marks
			•		
18.	$\frac{90}{0.6}$ or 150 or $\frac{120}{0.4}$ or 300 or $\frac{95}{0.5}$ or 190 or $\frac{45}{1.5}$ or 30			M1	For one correct bar drawn or one correct frequency density, not including $0 \le w \le 1$ or 1 small square = 1 or 1 large (cm) square = 25
	Frequency density =150, 300, 190, 30			M1	For three correct bars drawn or three frequency densities, not including $0 \le w \le 1$

correct bars

3

A1

All bars correct.

Total 3 marks

heights 3, 6, 3.8, 0.6 cm

19.	(a) (i)		-3	1	B1	
	(a) (ii)		0	1	B1	
	(a)(iii)		$\frac{3}{2}$	1	B1 1.5, $1\frac{1}{2}$	
	(b)	Eg $\sqrt{245} = \sqrt{49} \times \sqrt{5}$ or $\sqrt{245} = \sqrt{49} \times 5$ or $\frac{14}{\sqrt{49} \times 5}$ or $\frac{14}{\sqrt{49} \times 5}$ or $\frac{14}{\sqrt{245}} \times \frac{\sqrt{245}}{\sqrt{245}}$ or $\frac{14\sqrt{245}}{245}$ or $\frac{14 \times 7\sqrt{5}}{245}$ Note:	$\frac{2\sqrt{5}}{5}$		A1 For simplifying	g the denominator. $g\sqrt{245} \text{ and }$
		To rationalise $\frac{14}{\sqrt{245}}$ accept $\frac{14}{\sqrt{245}} \times \frac{\sqrt{245}}{\sqrt{245}}$ or $\frac{14\sqrt{245}}{245}$ To rationalise $\frac{2}{\sqrt{5}}$ or $\frac{14}{7\sqrt{5}}$, etc, only accept $\frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ or $\frac{14}{7\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ etc.	5	2	NB: The solutic correct (cso) NB: Do not according to the correct (cso)	g the denominator. on must be fully $\operatorname{cept} \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} \text{ as}$ od for rationalising the
	(c)	$e^2 - 2e\sqrt{3} - 2e\sqrt{3} + (2\sqrt{3})^2$ or $e^2 - 4e\sqrt{3} + 12$	e = 5 $f = 37$	3	with correct sign Eg $e^2 - 4e\sqrt{3}$ o $e^2 - 2e\sqrt{3} + 12$, all 4 correct ter	$e^2 - 2e\sqrt{3} - 2e\sqrt{3}$ or
						Total 8 marks

					Total 5 marks
	"13.8(56)" + "16.7(55)"	30.6	5	M1 A1	dep on first and third method marks Accept 30.6 - 30.7 inclusive
	$(\operatorname{arc} ABC) = \frac{120}{360} \times 2 \pi \times 8 \text{ or}$ $(\operatorname{arc} ABC) = \frac{120}{360} \times \pi \times 16 \text{ or}$ $(\operatorname{arc} ABC) = \frac{2\pi \times 8}{3} \text{ or } \frac{\pi \times 16}{3} \text{ oe or } 16.7(55)$			M1	For attempting to find the length of arc <i>ABC</i> Allow 16.7(5516082) rounded or truncated to at least 3 significant figures.
	$\frac{AC}{\sin 120^{\circ}} = \frac{8}{\sin 30} \text{ oe or}$ $8\cos(30^{\circ}) \text{ or } 8\sin(60^{\circ}) \text{ or } 4\sqrt{3} \text{ or } 6.92(820) \text{ oe}$ $(AC =) 2 \times 8\sin(60^{\circ}) \text{ oe or } (AC =) 2 \times 8\cos(30^{\circ}) \text{ oe or}$ $(AC =) \frac{8}{\sin 30} \times \sin 120 \text{ oe or}$ $(AC =) \sqrt{8^2 + 8^2 - 2 \times 8 \times 8\cos 120^{\circ}} \text{ or } \sqrt{128 + 64} \text{ or}$ $\sqrt{192} \text{ or } 8\sqrt{3} \text{ or } 13.8(56) \text{ oe}$			M1	Allow 13.8(5640646) rounded or truncated to at least 3 significant figures. Implies first M1
20.	$(AC^2 =) 8^2 + 8^2 - 2 \times 8 \times 8\cos 120^\circ \text{ or } (AC^2 =) 192 \text{ oe or}$ AC 8			M1	Allow 6.92(820) rounded or truncated to at least 3 significant figures.

21. (a)	$(-)\frac{16}{x} = (-)16x^{-1}$			M1 For $16x^{-1}$ or $-16x^{-1}$
		$2x + \frac{16}{x^2}$	3	M1 For $\pm 16x^{-2}$ or $\pm \frac{16}{x^2}$ or $2x$ A1 Allow $2x + 16x^{-2}$ M2A0 for an incorrect answer that includes $16x^{-2}$
(b)	$2x + \frac{16}{x^2} = 0$ $2x^3 = -16 \text{ or } x^3 = -8$			M1 ft from (a) Do not accept $x^2 - 16x^{-1} = 0$ oe M1 For a correct equation in x^3 NB: No ft allowed
	x = -2			A1 For $x = -2$ Accept as part of an incorrect coordinate, eg $(-2,10)$
		(-2,12)	4	A1 Accept $x = -2$, $y = 12$
			_	Total 7 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom